Utilizing Modern Computer Development Tools In Implementing The Resource Consumption Model for Process Design (RCM)
RCM Research Objectives

Better Analysis of Process Design Alternatives

- Cost, Time, and Capacity
- Economy of Scale
- Compare alternatives
- Greater detail for better understanding
- Easy sensitivity analysis
Other Methodologies

- Engineering Economics
- Cost Accounting
- Break-even Analysis
- Cost Estimating
- “Design For” Methodologies
Modern Computer Tools

- Object-Based Programming
- Object-Oriented Programming
- Database Modeling and SQL
- Object Linking and Embedding (OLE)
Object-Based Programming

• Graphical User Interface (GUI)
• Object-Based versus Procedural-Based
• Visual Objects
• Products
 • Visual Basic
 • Visual Foxpro
 • Many Others
Data Screen

Resource Cost Model for Process Design

Data

<table>
<thead>
<tr>
<th>Projects</th>
<th>Cost</th>
<th>Time</th>
<th>Utilization</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alternatives

<table>
<thead>
<tr>
<th>A1</th>
<th>P1</th>
<th>Purchase Cannon</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>P1</td>
<td>Purchase HP</td>
</tr>
<tr>
<td>A4</td>
<td>P1</td>
<td>Purchase Epson</td>
</tr>
</tbody>
</table>

Resources

<table>
<thead>
<tr>
<th>Select?</th>
<th>P_ID</th>
<th>A_ID</th>
<th>R_ID</th>
<th>Resource</th>
<th>Cost</th>
<th>Saved Pcs</th>
<th>Time</th>
<th>Prod</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
<td>A1</td>
<td>R1</td>
<td>Printer C</td>
<td>370.00000</td>
<td>1.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>A1</td>
<td>R2</td>
<td>Print Head</td>
<td>45.00000</td>
<td>1.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>A1</td>
<td>R3</td>
<td>Ink Cartridge Refills</td>
<td>22.00000</td>
<td>1.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>A1</td>
<td>R4</td>
<td>Setup Labor (20 min)</td>
<td>0.25000</td>
<td>1.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>A1</td>
<td>R5</td>
<td>Labor: Load Paper</td>
<td>0.20000</td>
<td>1.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>A1</td>
<td>R6</td>
<td>Labor: Replace Print</td>
<td>0.20000</td>
<td>1.00000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exit
Object-Oriented Programming

- Different from Object Based
- OOP Components
 - Inheritance
 - Encapsulation
 - Polymorphism
- Advantage
 - Improved programming efficiency
 - Faster development time
 - Easier to understand and debug
rcmccalculations Event

frmMain.rcmccalculations - Microsoft Visual FoxPro

- **Object:** frmMain
- **Procedure:** rcmcalculations

- **Author:** Rick Jerz
- **Application:** RCMCALCULATIONS
- **Create Date:** 97/02/03
- **Last Modify:** 97/10/11
- **Description:** Calculations for RCM

Recalculates a single resource costs
Includes: Quantity, Time, Consumption, and System Constraints

Puts the results of the calculations into gnSummary[] array.
Note: Must be careful to adjust for difference in array starting point.
PEGraph starts at 0, VFP starts at 1.

DIMENSION lnCost[3] & Array that holds the cost for the 3 constraints.
DIMENSION lnTime[3] & Array that holds the time for 3 constraints.
DIMENSION lnUtilization[3] & Array that holds the utilization for the 3 constraints.
DIMENSION lnNumPur[3] & Array that holds the number of resource pur...
Database Modeling & SQL

- Databases contain company information
- SQL is the standard access method
- Data in RCM is contained in a database
System Time Calculations

\[g_1 \{ r_1, t_1, a_1, p_1 \} \]
\[g_2 \{ r_2 \} \]
\[g_3 \{ r_3, r_4, r_5, r_6, r_7, r_8 \} \]
\[t_R \]
\[o_r \]
SQL Select

* Calculate the overall controlling cycle time accounting for all overlaps.
 * (to be used for system constraint calculations)

* Fix for when only one setup resource is being considered. (Might need to double check logi
 * lnMinAvailability must be defined.
 * lnMinAvailability = 1

* First, get the overall time for groups in series without overlap
 SELECT MAX(nresprodtime*(1-nrespcntover)/nresprodpcs) as ControlTime;
 FROM rcm!resources;
 WHERE Resources.cprojid = lcCurrentProjectID;
 AND Resources.caltid = lcCurrentAlternativeID;
 GROUP BY Resources.ngroup;
 into cursor lnControlTime

* Combine the controlling sequence time and the largest individual resource time for an alte
 select sum(controlTime);
 from lnControlTime;
 union;
 SELECT MAX(Resources.nresprodtime/nresprodpcs);
 FROM rcm!resources;
 WHERE Resources.cprojid = lcCurrentProjectID;
 AND Resources.caltid = lcCurrentAlternativeID;
 into cursor lnControlTime
Object Linking & Embedding

- RCM - Graphing Need
- Third-party objects
- Advantages
 - Faster development
 - Better quality
Alternative Comparison

Resource Cost Model for Process Design

Data | Plotting | Cost | Time | Utilization | Summary

Average Part Cost ($) vs Production Volume

Proj: Should the tandem or single torch robotic system be purchased? for Selected Alternatives

Tandem Torch Single Torch Manual Welding

R. Jerz

15

3/19/01
Resources Selected

Average Part Cost($) vs Production Volume
Proj = P3, Alt = Tandem Torch, Selected Resources

Average Part Cost($) vs Production Volume

Average Part Cost($) vs Production Volume
Proj = P3, Alt = Tandem Torch, Selected Resources
Alternatives Time Comparison

Total Time (hrs) vs Production Volume

Proj: Should the tandem or single torch robotic system be purchased?, for Selected Alternatives

- Tandem Torch
- Single Torch
- Manual Welding

Production Volume vs Total Time (hrs)
Conclusions

- RCM modeling very difficult w/o tools
- Graphic environment standard
- OOP improves programming efficiency
- Databases understanding is valuable
- Third-party controls are important
- IE’s command of tools provides research advantages